Comparison of two methods for estimating absolute risk of prostate cancer based on single nucleotide polymorphisms and family history.
نویسندگان
چکیده
Disease risk-associated single nucleotide polymorphisms (SNP) identified from genome-wide association studies have the potential to be used for disease risk prediction. An important feature of these risk-associated SNPs is their weak individual effect but stronger cumulative effect on disease risk. Several approaches are commonly used to model the combined effect in risk prediction, but their performance is unclear. We compared two methods to model the combined effect of 14 prostate cancer risk-associated SNPs and family history for the estimation of absolute risk for prostate cancer in a population-based case-control study in Sweden (2,899 cases and 1,722 controls). Method 1 weighs each risk allele equally using a simple method of counting the number of risk alleles, whereas method 2 weighs each risk SNP differently based on its odds ratio. We found considerable differences between the two methods. Absolute risk estimates from method 1 were generally higher than those of method 2, especially among men at higher risk. The difference in the overall discriminative performance, measured by area under the curve of the receiver operating characteristic, was small between method 1 (0.614) and method 2 (0.618), P = 0.20. However, the performance of these two methods in identifying high-risk individuals (2- or 3-fold higher than average risk), measured by positive predictive values, was higher for method 2 than for method 1. These results suggest that method 2 is superior to method 1 in estimating absolute risk if the purpose of risk prediction is to identify high-risk individuals.
منابع مشابه
Estimation of absolute risk for prostate cancer using genetic markers and family history.
BACKGROUND Multiple DNA sequence variants in the form of single-nucleotide polymorphisms (SNPs) have been found to be reproducibly associated with prostate cancer (PCa) risk. METHODS Absolute risk for PCa among men with various numbers of inherited risk alleles and family history of PCa was estimated in a population-based case-control study in Sweden (2,893 cases and 1,781 controls), and a ne...
متن کاملThe miR526b-5p-Related Single Nucleotide Polymorphisms, rs72618599, Located in 3\'-UTR of TCF3 Gene, is Associated with the Risk of Breast and Gastric Cancers
Introduction: Single nucleotide polymorphisms result in dysregulation of the proto-oncogene TCF3 gene, which is associated with the development, metastasis, and chemoresistance of different malignancies. Methods: GSE10810 microarray dataset and GEPIA2 online software were used to find differentially expressed genes and the TCF3 status in breast cancer (BC) and gastric cancer (GC), respectively....
متن کاملEstimation of Secondary Skin Cancer Risk Due To Electron Contamination in 18-MV LINAC-Based Prostate Radiotherapy
Introduction Accurate estimation of the skin-absorbed dose in external radiation therapy is essential to estimating the probability of secondary carcinogenesis induction Materials and Methods Electron contamination in prostate radiotherapy was investigated using the Monte Carlo (MC) code calculation. In addition, field size dependence of the skin dose was assessed. Excess cancer risk induced by...
متن کاملPrognostic Significance of MMP2 and MMP9 Functional Promoter Single Nucleotide Polymorphisms in Head and Neck Squamous Cell Carcinoma
Objective(s) Matrix metalloproteinases comprise a family of enzyme that is able to degrade components of extra cellular matrix. There are single nucleotide polymorphisms in the promoter regions of several genes with ability to influence cancer susceptibility. The aim of this study was to analyses association between MMP2 and MMP9 promoter polymorphisms and head and neck squamous cell carcinoma...
متن کاملAssociation of CAT C-262T and SOD1 A251G single nucleotide polymorphisms susceptible to gastric cancer
Oxidative stress is known to be one of the major factors involved in the development and progression of cancer. Oxidative stress can occur due to an imbalance between concentrations of reactive oxygen species and antioxidant capacities. Catalase (CAT; OMIM 115500) and superoxide dismutase 1 (SOD1; OMIM 147450) play important roles in the primary defense against oxidative stress. In the present ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology
دوره 19 4 شماره
صفحات -
تاریخ انتشار 2010